蛇类的十大天敌克星 平头哥仅第3第1非常强悍实至名归
导语:说到蛇很多人都会觉得毛骨悚然,确实比较吓人,甚至世界上最长的大蛇长度更是十分惊人。在生活中很多人是害怕蛇类的,那么在生活中十分嚣张的蛇,有没有什么比较害怕的东西呢?它有什么天敌呢?探秘志小编带大家一起了解一下吧。
蛇类的十大天敌克星
1、人类
虽然怕蛇的很多,但是人类却是蛇的最大克星和天敌,是不是没有想到。人类不仅可以拿蛇做菜还可以拿蛇泡酒,甚至有一些人还敢活吞毒蛇,简直不能更加吓人了。
2、蛇獴
蛇獴可能很多人都不熟悉,但是这种动物确实十分神奇,甚至可以免疫蛇毒,算是真正意义上的蛇类天敌,是抓蛇的一把好手。
3、平头哥
平头哥是一种十分无畏无惧的动物,甚至已经进入世界吉尼斯纪录。它为什么这么厉害,可能是因为天不怕地不怕的性格吧。它敢斗世界十大战斗力强的猫一二名,也就是狮子和老虎,蛇类什么的都算是小意思啦。
4、眼睛王蛇
虽然眼睛王蛇也是蛇的一种,但是它对待自己的同类丝毫不会手软的,甚至于爱上了吃蛇。它的体型和毒液都是所向披靡的。
5、鹰
鹰有着十分雄伟的体态,同时性格也是非常凶猛的,在动物学上面称它是吃肉的猛禽类。它有着弯曲的嘴巴,爪子还有一些钩,性格十分凶猛强悍,食物比较丰富,不仅包括一些小型的哺乳动物,蛇也是比较喜欢的。
6、浣熊
浣熊长相比较萌,眼睛四周有一圈颜色比较深的皮毛,体型也比较小,虽然在人们眼里它十分可爱,但是有时候它们抓蛇什么的也是小菜一碟。
7、蛇雕
蛇雕是一种体型中大型的鹰类,喜欢居住在深山老林当中,也特别喜欢在山林中活动。它主要吃一些蛙、蛇等。
8、猫鼬
猫鼬是一种比较小型的哺乳动物,它们比较善于挖洞,晚上休息白天出来活动。它们主要吃一些蜥蜴、蛇类等等。
9、巨蜥
巨蜥身体长度为60厘米-90厘米之间,最大的可以达到2-3米,它是中国所有蜥蜴中最大的品种。巨蜥性格比较凶猛喜欢打斗,尾巴力气也很大。
10、刺猬
虽然刺猬很萌没错啦,但是野生的刺猬也是不太好惹的。它们一身刺具有强大的防御能力,另外它们吃的是老鼠和蛇等等食物。
导语:说到悖论大家都不陌生,大家所熟悉的有费米悖论、上帝悖论等等,都比较有趣揭示了很多道理,今天探秘志小编为大家介绍另外一种悖论-钱包悖论,一起来看看吧。
钱包悖论
所谓钱包悖论指的是钱包游戏,是概率论中的一个悖论,起源于1953年,是比利时数学家Maurice Kraitchik提出的谜题。
在赌博中比较常见,假如“如果赢的话、会赢得比输得更多”,比如你去玩吃角子老虎机时认为“就算只中樱桃,也是翻五倍!”但问题在于不一定会中奖。
起源
数学家莫里斯·克莱特契克在他的《数学消遣》书中,赌注是领带而不是钱,两个人都声称自己的领带更好,所以他们找来了第三个人来做裁判,看看判决哪一个的更好。胜利的人需要把自己的领带送给失败者作为安慰。
两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?”
分析
克莱特契克的分析
克莱特契克在他的书中指明必须限制条件,这才是一场公平的游戏,例如A,B二人对对方穿领带的习惯一无所知等。
他还假定每一个比赛者带有从0到任意数量(比如说一百元)的钱。以此假定构成两人钱数的矩阵,就可看出这个此赛是“对称的”,不会偏向任何一方。
但他没有指出两个比赛者的想法错在哪里。
考虑胜算
其实问题就在A,B二人只以“可以赢更多的钱”这点,就做出这场赌博对自己有利的结论,当然是错误的。显然是缺乏思考,对客观事物的复杂程度缺乏认识,才会做出如此乐观的结论。
这场赌博对谁有利的考虑谁可以赢得这场赌博。而不是以“可以赢更多的钱”来判断。
若以谁有胜算来判断,必须注意二点:
必须计算期望值。 “钱包里有多少钱”是很随机的。无法有一定的标准。难以论定这场赌博的胜负,但若将“所有人类的钱包里的钱”相加后除以全人类数目,还是可以得出一个平均值。 若钱包里的钱比平均值小,那胜算比较大,反之较小。各国家,各地区人的钱包里的平均值都不一样,全人类太广泛,以国家,地区来分更加有胜算。
但就算是费很大力气来得到这平均值,还是很难确定有胜算的。由此可见A,B二人认为这场赌博对自己有利的结论是做得多么轻易,缺乏思考。
其实最有胜算的方法是知道对方的钱包里有多少钱。
另一种分析
钱包只有二个,所以钱包里的钱只存在二个数:
X,Y,设X>Y。
A有1/2机会是X,1/2机会是Y;B也如是。
如果A的钱是Y,则赢得X;如果A的钱是X,则输掉X;B也如是。
结论:1/2机会赢,1/2机会输。
而A,B想法的问题出在,他们假设了3个数:
设A有X元,B有Y元,(Y
但实际上只存在2个数,所以这是错误的论证,推理出错误的结论。
结语:看完了这个有趣的钱包悖论,大家是不是有种恍然大悟的感觉,但是在最后小编提醒一句赌博不利于身心健康甚至会家破人亡,所以不要沾染为好。
导语:不得不说,从古至今,科学一直在改变着世界。世界的进步离不开科学的研究和发展,人类在科学领域的发现也很多,之前小编为大家讲解过世界十大重大科学发现,今天就为大家揭秘十个令人震惊的科学发现,感兴趣的不妨一起往下看!
十个令人震惊的科学发现
1、核磁共振
在医学上,核磁共振是一种非常准确和有效的疾病诊断工具,1938年美国物理学家伊西多·艾萨克·拉比首次在分子束中描述和测量了核磁共振,1944年,他因这一发现被授予诺贝尔物理学奖。
2、麻醉药
早在公元70年,就开始使用鸦片、酒精等等作为手术麻醉用途,但直到1847年,美国外科医生亨利·雅各·毕格罗才将乙醚和氯仿作为第一种全身麻醉剂,使痛苦的手术可以让人的疼痛减轻一点。
3、电
这一改变世界命运的电发明者归功于英国科学家迈克尔·法拉第,他的主要发现包括电磁感应、反磁和电解的原理。法拉第还创造了第一台发电机,这一发明是现代大型发电机的先驱。
4、青霉素
如果苏格兰科学家亚历山大·弗莱明没有在1928年发现青霉素,我们很可能到现今,还会死于胃溃疡、牙齿脱落、链球菌咽喉和猩红热、葡萄球菌感染、莱姆病、钩端螺旋体病等疾病,青霉素作为十个令人震惊的科学发现之一,给人类带来了巨大的福利。
5、空调
原始的空调系统自古以来就已经存在,但直到1902年,纽约布法罗的一位名叫威利斯·卡里尔的年轻工程师发明了第一台现代电气空调设备。
6、螺杆泵
阿基米德是古希腊最重要的科学家之一,据信他设计了第一批水泵,一种旋转的瓶塞螺旋水泵,当时在埃及被当地人使用。它推动了灌溉技术,今天仍在许多污水处理厂广泛使用。
7、血液循环
血液循环的发现是医学上最重要的发现之一,这一发现归功于英国医生威廉·哈维,于1628年,他是第一个详细描述血液通过心脏泵入大脑和身体系统循环人,他作为血液循环的发现者,血液循环发现的规律,对推进现代科学奠定了基础。
8、巴氏杀菌法
巴氏杀菌法,又称为低温消毒法,是由法国科学家路易斯·巴斯德在19世纪60年代发现的,它是一种热处理过程,能破坏某些食品和饮料中的致病微生物,如葡萄酒、啤酒和牛奶。这一发现对公众健康产生了巨大影响。
9、蒸汽机
众所周知,现代文明是在以蒸汽机为动力的工业革命工厂中形成的。蒸汽机的发明是在大约一百年前由3位英国发明家发明的:托马斯·萨弗里、托马斯·纽科,还有最著名的詹姆斯·瓦特。
10、周期表
1869年,俄罗斯化学家德米特里·门捷列夫注意到,当按照原子量排列时,化学元素都有类似性质的属性,基于这些知识,他创造出第一个元素周期表,这是化学领域最重要的发现之一。
导语:NASA指的就是美国航空航天局,是美国联邦的一个科研机构,主要开展对太空的深入研究。NASA是主要负责美国的太空计划,之前小编为大家讲解过nasa不敢公布的照片,今天探秘志小编为大家揭秘NASA改变世界的十大科学发现,感兴趣的不妨一起往下看!
NASA改变世界的十大科学发现
1、化学检测
美国宇航局使用智能光学系统制造湿度和pH敏感传感器,以检测飞机上的腐蚀情况,以防止损坏。当传感器接触到飞机上的化学反应时,它会改变颜色。美国国防部现在正在使用这些传感器来探测化学战剂和可能潜在的威胁。
2、粉状润滑剂
这也是美国宇航局的发明产品,它是通过热喷涂,以保护箔空气轴承。它具有减少摩擦和排放的能力,在诸如制冷压缩机、涡轮增压器和混合动力涡轮发电机等工业应用中很受欢迎。
3、压缩食品
美国宇航局在为阿波罗任务做准备的过程中,对太空食品进行了大量的研究,并提出了冷冻干燥的方法。这一过程涉及食品脱水,以使运输更加方便。
4、强化婴儿食品
美国宇航局发现了一种微藻,他们将微藻用作太空旅行的再循环剂。人类生命的DHA和生命的ARA是以微藻为基础的,现在是商业婴儿配方中的一种营养成分。
5、红外耳温度计
美国宇航局利用红外技术测量恒星的温度,这项技术也成为了耳朵温度计,它使用红外传感器来探测耳膜释放的能量来捕捉我们的体温,使我们从标准水银温度计的测量中解脱了出来,因为水银温度计的数字有点难读。
6、太阳能
为了建造一架无人驾驶的遥控飞机,NASA成立了一个28名成员的联盟,名为“环境研究飞机和传感器技术”。这项技术利用太阳能不增加飞机的重量。由于这项发明,数以百万计的家庭现在配备了晶体硅太阳能,减少了传统的能源开支,减少了污染。
7、烟雾探测器
美国宇航局发明了第一个可调节的烟雾探测器,让宇航员知道是否有火灾或有毒气体,并且它们是否发生在太空实验室里,现在,多亏了这种技术,我们在家里也能安全的防火防灾。
8、无绳工具
在登陆月球之前,美国宇航局需要宇航员可以用来获取岩石和土壤样本的设备,轻而有力的就能到达月球表面,美国宇航局布莱克和德克尔发明了电池驱动的电动钻头。现在,这种无绳工具比比皆是,对于探索月球也变的容易了许多。
9、远程电信
这项技术从研究到开发最后用于通讯,每天有大约200颗美国宇航局卫星围绕地球运行,使我们能够即时与地球另一端保持联系。
10、水过滤器
宇航员在太空中需要干净的水,所以NASA用含有离子的活性炭组装了一个过滤器来中和水中的病原体,给宇航员们创造了一个安全舒适的环境,现在,我们有了水过滤器。
导语:很多人家里都喜欢养猫,因为猫咪非常可爱迷人,甚至有人觉得养猫后运气变好了,有些人养猫也好奇猫的智商相当于人几岁,总之猫咪身上有很多特别的地方,甚至有人沉迷吸猫无法自拔。但是养猫也有很多好处的,下面和探秘志小编一起了解一下吧。
养猫十大好处
1、猫咪能提供情感支持
困难低潮时光,猫咪依偎有助于人们走出悲伤情绪,受访调查显示,猫咪是良好的倾听者,伤心难过时,有猫陪伴,跟猫聊天,能很快走出困境。这是养猫的十大好处之一。
2、猫咪有助关系建立
很多女性表示在约会的时候,养猫的男性给人的感觉更好,印象分也更高,所以相比较起来更加喜欢养猫的男性。
3、养猫的性格更加敏感,也更加豁达
根据一项旧金山研究发现,猫、狗主人确实有很大的性格差异,通常猫主人拥有更开放的胸襟。所以养猫的十大好处之一是让铲屎官的性格更加豁达。
4、养猫可以降低胆固醇
加拿大科学家认为,猫咪可以有效降低主人的高胆固醇水平,猫咪可以解除甘油三酯的原因至今不明,虽然拿降低胆固醇来养猫当借口不够合理,但是大家不觉得十分神奇吗。
5、猫咪可帮助阿兹海默症患者
根据研究,如果家里的阿滋海默患者拥有一只爱猫,那么他们生活会比较平和,没有那么多焦虑感,不容易发生冲突。猫咪也是最合适的陪伴者,因为他们不像狗需要这么多的照顾。
6、猫咪可以帮助自闭患者
一项根据昆士兰大学的研究发现,自闭症儿童更容易和猫交流,它们的温柔与自然让自闭儿童更容易适应,比起狗来说猫咪是更好的陪伴伙伴。
7、有猫咪的人更聪明
根据调查知道,一般来说,大部分养猫的人都有着比较好的生活和比较高的教育水平,相处起来更加容易。
8、猫咪能满足人类的陪伴需求
一项澳洲研究显示家里有猫,欢愉程度等同拥有浪漫的同居伴侣,猫咪对情感的记忆深刻,会在重要时刻给予回馈,甚至有些人认为只要有猫就可以,不再需要什么男朋友。
9、养猫有助于性格更柔和体贴
猫咪不喜欢信任别人,你需要更多的耐心去养它,所以可以养好猫的人,一般都比较体贴温柔,性格比较好。
10、养猫能预防癌症等重大疾病
英国科学家表示,宠物体味中含有的硫氢化合物,能刺激和维持人体的线粒体活性,从而使细胞有能量控制某些炎症,能有效预防癌症和一系列心脑血管疾病。这算是养猫十大好处中比较大的好处了吧。
结语:看了上述诸多养猫的好处,各位还在犹豫吗?还不赶快行动起来加入吸猫的行列中,猫治百病哦,赶快行动起来吧。
导语:现在人类比较喜欢进行一些猜想,比如有关未来人类生活的十大猜想等等,在数学界猜想等也是比较盛行的。哥德巴赫也有一大重要猜想,也就是“1+1”猜想,下面和探秘志小编一起了解一下吧。
哥德巴赫猜想
哥德巴赫猜想是最广为人知的数学难题,中学生就都知道这个猜想:“所有大于4的偶数都可以分解成两个素数(质数)的和”。这个猜想有个简称叫做1+1,这是个引起了很多误解的叫法,为什么哥德巴赫猜想会被称作1+1呢?
有人说哥德巴赫猜想就是证明1+1=2,这个是基本的一年级数学题,这个说法有点离谱了。还有人说1+1=2不是小学算式,其中1+1代表一个质数加另一个质数,2就代表偶数。首先1不是质数,2也不是哥德巴赫猜想中的偶数,猜想中最小偶数是6。再就是即使1可以代表质数,2也可以代表大于6的偶数,那也不能写成1+1=2,因为这个算式语言表述应该是:“两个质数的和是一个偶数”。这个也比较简单啊,根本不需要哥德巴赫猜。
为什么被称为1+1呢
哥德巴赫猜想常被称为1+1,没有后边的=2。那么被称为1+1的具体原因是什么呢?哥德巴赫猜想虽然看着比较简单,但是实际上看懂题目了不一定会做,甚至很多人连思路都没有,其主要包含四个方面:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。
殆素数
殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的。
“a + b”问题的推进
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1956年,中国的王元证明了“3 + 4”。稍后证明了 “3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
到这里研究就截止了,几十年过去了,仍然没有其他进展,甚至有很多数学家认为陈景润的定理是殆素数方法的极限,也就是说殆素数的思路根本证明不了哥德巴赫猜想。
虽然这种办法还可以最终证明哥德巴赫猜想,但却给了哥德巴赫猜想一个令人误解的名字——1+1。
结语:这个研究过程是不是非常有趣,当然数学的发展也不是一帆风顺的,在过程中也有数学三次重大危机,但是最终结果是好的就够了。
导语:传说中1943年10月份美国海军在费城进行的某种机密实验,被大家称之为费城实验。这个实验比较成功的将一艘驱逐舰以及全体船员投入到了另一个空间,并且据说通过一些手段所有的船只都消失了,但是神奇的是20分钟实验结束之后,船只被移送到了479公里以外的诺福克码头。这是真的吗?探秘志小编带大家一起看看吧。
费城实验
费城实验起源自彩虹计划,这是引入了爱因斯坦的“引力和电流的统一场论”,最开始的目的是为了让舰艇借助强烈的电磁场来干扰和躲避敌方鱼雷的攻击,然后在空气中产生强烈的磁场,让敌人的雷达落空。
这次费城实验在当时引起了全世界的轰动,神奇的事情还没结束,就在实验之后,船员们都发生了奇怪的变化,一些船员会突然的消失,又突然的重现,事后费城实验的主要负责人自杀身亡,临死前说了一些关于此次实验的机密事件。
费城实验轰动一时,在事件发生之后,美国军方封锁消息,编造了一条消息意图掩盖此次事件的真想,当时驱逐舰上的船员都被强制退伍,当记者采访所有的这些船员的时候,他们都极力否认费城实验的发生。但是当时实验场地附近的一些船只都看到了这次事件的发生,对于费城实验的真实性,大部分人都是相信的,为何他们要极力掩盖呢?
传言参与费城实验的人都是当时极富盛名的科学家,那么他们是否又会留下证据或者推论来告诉后人此次事件的真实性呢?
特拉斯爱因斯坦是否参与其中
传说当时费城实验的总指挥是尼古拉特斯拉,这位天才学家由于坚决反对用人类来进行这样的实验,强制被军方解除职位,由著名数学家,计算机真正的开创者冯诺依曼担任了总指挥,他迫于军方的压力,最终还是开始了费城实验,在20分钟之后结束。
据说这场实验爱因斯坦也参加了,并且还留下了有关这次实验的手稿,不过在其去世之前这些手稿就消失了。
费城实验是真的吗
虽然这个实验说的神乎其神,但是除了有一位目击者宣称看到整个费城实验的经过,其余所有参与此实验的船员都否认曾有任何事件发生。这个实验没有其他更多的直接证据,实验内容也缺乏一定的严谨性,这个实验的真假一直备受质疑。
另外美方也否认了这一切表示在这个时间,爱尔德里奇号正在海上进行护航并且从来没有到过费城。另外值得注意的是,假如为了保证实验的严密性为什么要在大白天进行呢?既然进行这种实验又为什么要拿崭新的船来实验呢?何不拿旧船试试看。
结语:根据众多证据证明,这个实验是并不存在的,那么所谓的费城实验失败品蒙托克怪兽也是无稽之谈,大家觉得真相如何呢?
导语:眼睛是心灵的窗户,日常生活都不能离开眼睛。但是有时候眼睛就值得大家相信吗?有些图片会默默的欺骗你的眼睛哦。下面要讲的和神奇的10张错觉图片一样,都是十分神奇的呢。和探秘志小编一起了解一下吧。
波根多夫错觉
大家看这个图片是不是感觉两头不是连在一起的,实际上它就是相连的,是不是比较神奇。这就是波根多夫错觉。假如一条直线以某个角度消失于一个实体表面后,随即又出现于该实体的另一侧,看上去会有些“错位”。
内在的神经机制为:视神经细胞在感受光线刺激的时候,也会受到旁边细胞的影响,并且在大脑对其加工的过程中也受到神经中枢的融和机制的影响。
和什么有关?
一条直线被两条平行线或实体遮断时,看起来被分割开的两条线段似乎不在一条直线上,这种错觉的大小与两个因素有关:
1、两条平行线之间的距离。两条平行线之间的距离越大,亦即直线被隔开的距离越大,错觉也越大。
2、直线与平行线的交角。当直线与平行线垂直时,几乎不发生错觉;直线越偏离垂直于平行线的垂直线时,错觉就越明显。这种错觉可供广告画面设计及其它方面运用。
重要的理论依据:
20世纪60年代中期,有人根据轮廓形成的神经生理学知识,提出了神经抑制作用理论。这是从神经生理学水平解释错觉的一种尝试。这种理论认为,当两个轮廓彼此接近时,网膜内的侧抑制过程改变了由轮廓所刺激的细胞的活动,因而使神经兴奋分布的中心发生变化。结果,人们看到的轮廓发生了相对的位移,引起几何形状和方向的各种错觉,如波根多夫错觉等。
神经抑制作用理论在解释错觉时和现代神经生理学的思想联系起来,这是好的,但这种理论只强调视网膜水平上感受器的相互作用,而忽略了错觉现象和神经中枢的融和机制的关系。例如,在波根多夫错觉图形中,如果给一只眼睛呈现倾斜线,给另一只眼睛呈现两条平行线,人们仍然看到了位移的错觉,这是用网膜上的抑制作用无法解释的。
结语:大家看了波根多夫错觉,是不是觉得十分神奇呢?假如胆子比较大的,也可以去看看最恐怖的十大错觉图,相信可以给你带来更多惊喜。
导语:大家有没有这样的情况,对着某个比较亮的东西看久了,移开目光依旧感觉看到了刚刚的东西,这就是所谓的视觉残像,有很多网上所谓奇怪的图片都是利用这一点来进行操作的,感觉这个比较有趣,和波根多夫错觉有的一拼,下面和探秘志小编一起了解一下吧。
视觉残像
眼睛在经过强光刺激后,会有影像残留于视网膜上,这是由于视网膜的化学作用残留而引起的,这就是残像。残像的问题主要是影响观察,因此应尽量避免强光和玄光的出现。
基本含义
从生理学角度来讲,物体对视觉的刺激作用突然停止后,人的视觉感应井非立刻全部消失,而是该物的映像仍然暂时存留,这种现象称作‘视觉余像“。视觉余像分为正余像和负余像两类。视觉余像的形成,是眼睛连续注视的结果,是因为神经兴奋所留下的痕迹而引发的。当外界物体的视觉刺激作用停止以后,在眼睛视网膜上的影像感觉并不会立刻消失,这种视觉现象叫做视觉后像。视觉后像的发生,是由于神经兴奋所留下的痕迹作用,也称为视觉残像。
残像对影视技术与传播设计来说具有非常重大的意义。正由于视觉残像的作用,才使我们有幸欣赏电影与动画艺术。正由于残像作用,使我们能通过移动的狭缝看清隐蔽其后的形象,也就是实现形象的非同时拼接。这正是电视成像的根本原理。残像是视觉后效之一
产生的原因
当我们的眼睛长时间的看着红色,然后转向百墙的时候,会感觉白墙上有绿色。这就是所谓的视觉残像。发生这种情况的原因是:当红色辐射光刺激人眼的感觉细胞时,会产生神经兴奋,而视线转移后,由于兴奋神经和抑制神经相互诱导的作用,使原来兴奋的神经处于抑制状态,而感受绿色的细胞反而兴奋起来,从而感到白墙上有绿色。
结语:残像在生活中很多地方运用的比较广,尤其是在动画领域更是特意利用了这些,感兴趣的朋友可以继续去了解更多哦。
导语:牟合方盖听名字是不是非常陌生,这是我国古代数学家刘徽发现的一种用于计算球体体积的方式,他希望可以用牟合方盖来证实《九章算术》的公式有错误,虽然最终并没有实现,但是这个发现有着重要的意义,下面和探秘志小编一起看看吧。
牟合方盖
这是我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,类似于现在的微元法。由于其采用的模型像一个牟合的方形盒子,故称为牟合方盖。
基本理论
其实刘徽是希望构作一个立体图形,它的每一个横切面皆是正方形,而且会外接于球体在同一高度的横切面的圆形,而这个图形就是“牟合方盖”,因为刘徽只知道一个圆及它的外接正方形的面积比为π:4,他希望可以用“牟合方盖”来证实《九章算术》的公式有错误。当然他也希望由这方面入手求球体体积的正确公式,因为他知道“牟合方盖”的体积跟内接球体体积的比为4:π,只要有方法找出“牟合方盖”的体积便可,可惜,刘徽始终不能解决,他只可以指出解决方法是计算出“外棋”的体积,但由于“外棋”的形状复杂,所以没有成功,无奈地只好留待有能之士图谋解决的方法:
“观立方之内,合盖之外,虽衰杀有渐,而多少不掩。判合总结,方圆相缠,浓纤诡互,不可等正。欲陋形措意,惧失正理。敢不阙疑,以俟能言者。”
但是在刘徽后二百多年贤能之士才出现,这就是中国伟大数学家袓冲之和他的儿子祖暅,他们继承了刘徽的想法,还利用了“牟合方盖”彻底地解决了球体体积公式的问题。
重要发现
主要是使用的三个“外棋”的计算方法。他们先考虑一个由八个边长为r的正立方体组成的大正立方体,然后用制作“牟合方盖”的方法把这大正立方体分割,再取其中一个小正立方体部分作分析,分割的结果将跟右图所示的相同,白色部分称为“小牟合方盖”,它的体积为“牟合方盖”的八分之一,而紫红、黄和青色的部分便是三个“外棋”。
祖冲之父子考虑这个小立方体的横切面。设由小立方体的底至横切面高度为h,三个“外?”的横切面面积的总和为S及小牟合方盖的横切面边长为a,因此根据“勾股定理”有:
a²=r²-h²
另外,因为
S=r²-a²
所以
S=r²-(r²-h²)=h²
于所有的h来说,这个结果也是不变的。祖氏父子便由此出发,他们取一个底方每边之长和高都等于r的方锥,倒过来立着,与三个“外棋”的体积的和进行比较。设由方锥顶点至方锥截面的高度为h,不难发现对于任何的h,方锥截面面积也必为h²。换句话说,虽然方锥跟三个“外棋”的形状不同,但因它们的体积都可以用截面面积和高度来计算,而在等高处的截面面积总是相等的,所以它们的体积也就不能不是相等的了,所以祖氏云:
“缘幂势既同,则积不容异。”
所以
外棋体积之和=方锥体积=小立方体体积/3=r³/3
即
小牟合方盖体积= 2r³/3
牟合方盖体积=16r³/3
因此
球体体积=(π/4)(16r³/3)=4πr³/3
这条公式也就是正式的球体体积公式。
结语:牟合方盖是中国古代人民智慧的结晶,学习这些才能更好的了解数学知识,并且达到触类旁通的效果。
导语:人的大脑是非常神奇的,至今为止人们依旧没有完全弄清楚大脑的运行方式。有时候面对很多事情的时候还会有似曾相识的感觉,这都是所谓的虚假记忆在作怪,下面和探秘志小编一起了解一下吧。
虚假记忆
所谓学家记忆就是在大脑记忆中自动形成的回忆,每个人都可能会产生虚假记忆,有时候还会将事物的真实性进行扭曲。人们一般都会坚信自己的记忆,甚至于大脑的谎言也不例外。不过不用担心,这并不是所谓的生病,这是正常的现象。
虚假记忆最开始被注意是发现犯罪现场的某些目击证人的证词不完全可靠,虽然目击证人证明自己确实看到了这些场景,但是会因为某些情景信息进行了混淆,所以对罪犯有了错误的描述。例如证人可能并没有看清楚罪犯的样子,但是大脑自动进行了某些补充,甚至把自己之前记得的某些人的脸进行填充。
虚假记忆的产生原因
为什么有人会对没有发生的事情那么肯定呢?美国杜克大学研究人员揭开了这个秘密,认为虚假记忆是大脑中负责处理记忆的部分区域活动增强所致。
为了解为什么有些人对虚假的记忆可以如此自信,杜克大学医学中心神经学家罗伯特·卡贝萨和他的同事,对参加记忆实验的健康志愿者的脑部进行了核磁共振成像扫描,结果显示那些不能够准确回忆起曾经发生过的事情的人,他们的大脑底部负责过去发生事实的内侧颞叶的活动持续增强。
根据卡贝萨在发表于《神经科学杂志》的文章可以知道,内侧颞叶以其丰富的特定细节记忆使记忆更为鲜明生动,一些附加的比较丰富的细节让更多人对自己的记忆深信不疑。
而对虚假事实回忆志愿者的测试结果表明,他们大脑底部额顶区的活动持续增强,而额顶区负责大脑的记忆概况,并不管记忆的细节部分。
另外根据研究也可以知道,随着人年龄的增长,对真实记忆的忘记速度要大于虚假记忆,也就是说对过去的记忆一直不变,最终会留下一个比较淡的印象这样反而让人更加相信。
结语:这个相关的研究其实是比较有用的,在医疗方面可以帮助医生更好的评估伴随年龄增长而引起的记忆力变化,也可以更好更快的诊断阿尔茨海默病早期患者。